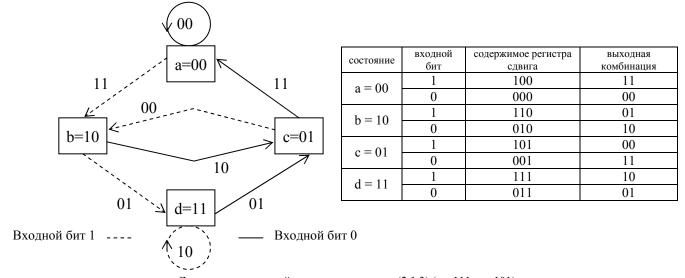
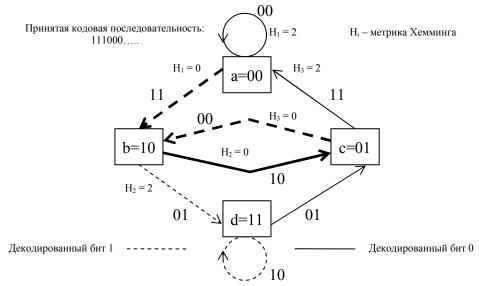
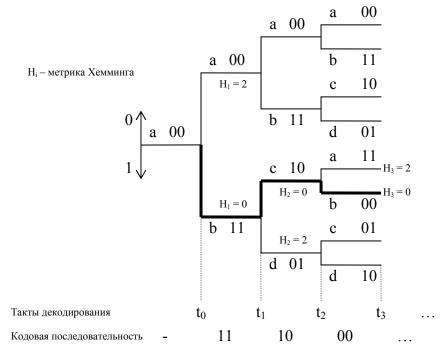
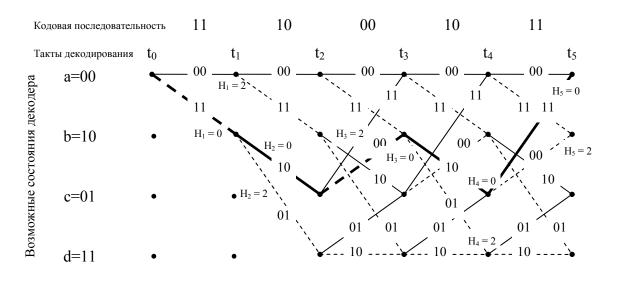

Несистематический сверточный кодер (2,1,3) $(g_1=111,g_2=101)$ $(k=3,q=1,m=2,R=q/m=1/2,n=k\cdot m/q=6,d_f=5)$

Структура несистематического сверточного кодера (2,1,3) $(g_1=111, g_2=101)$

№ итерации	Входной информационный бит	Состояние регистра сдвига	Сумматор 1	Сумматор 2	Выходные кодовые комбинации
0	-	000			-
1	1	100	1⊕0⊕0=1	1⊕0=1	11
2	0	010	0⊕1⊕0=1	0⊕0=0	10
3	1	101	1⊕0⊕1=0	1⊕1=0	00
	•••		•••		
N-1	0	010	0⊕1⊕0=1	0⊕0=0	10
N	0	001	0⊕0⊕1=1	0⊕1=1	11

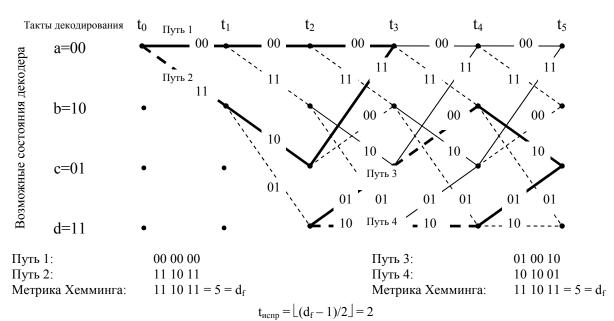
Процесс кодирования информационного потока 101...00

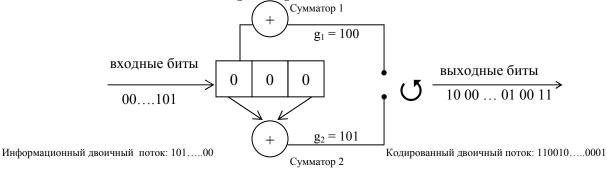

Диаграмма состояний сверточного кодера (2,1,3) (g_1 =111, g_2 =101)

Общий подход к декодированию кодовой комбинации, не содержащей ошибок

Декодирование на основе древовидной диаграммы сверточного кодера (2,1,3) $(g_1=111, g_2=101)$



Декодирование на основе решеточной диаграммы сверточного кодера (2,1,3) $(g_1=111, g_2=101)$


----- Входной бит 1

Узлы диаграммы

Входной бит 0

Определение минимального свободного расстояния d_f сверточного кодера (2,1,3) (g_1 =111, g_2 =101)

Структура систематического сверточного кодера (2,1,3) $(g_1=100, g_2=101)$

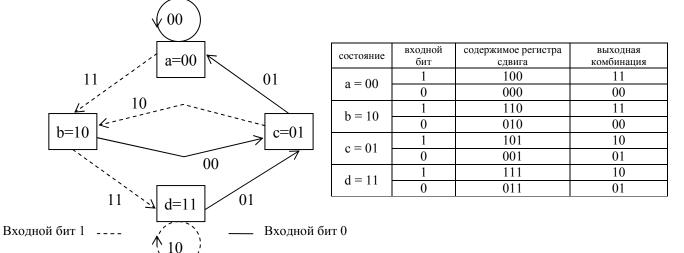
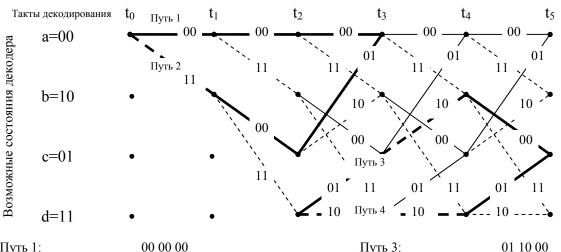
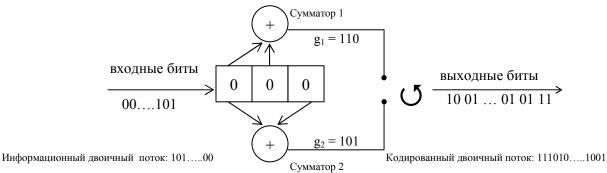
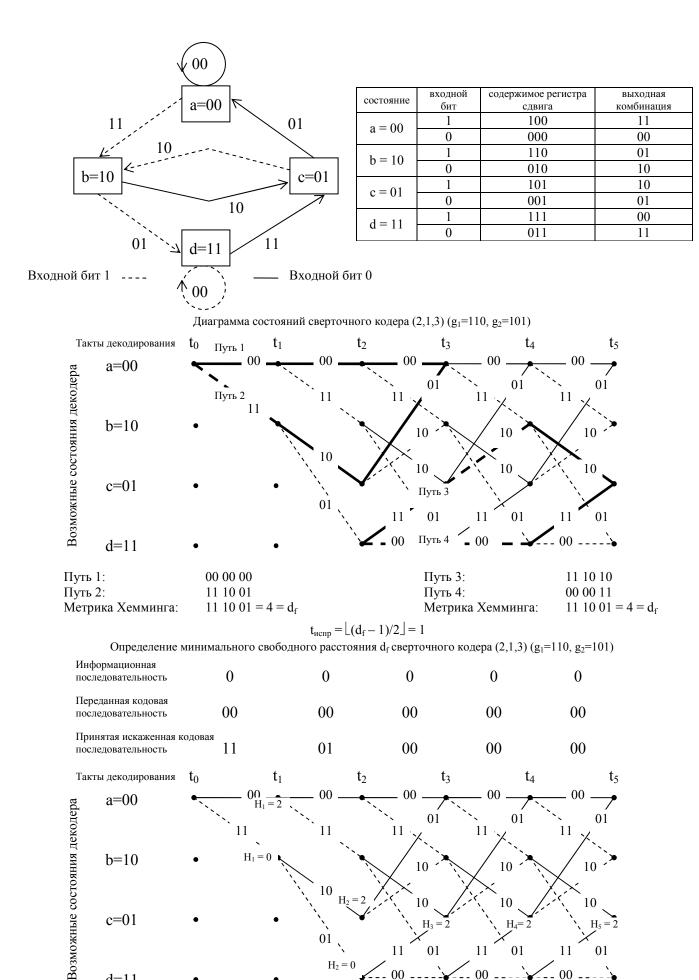



Диаграмма состояний сверточного кодера (2,1,3) $(g_1=100, g_2=101)$



Путь 1: 00 00 00 Путь 3: 01 10 00 Путь 2: 11 00 01 Путь 4: 10 10 01 Метрика Хемминга: 11 00 01 = 3 = $d_{\rm f}$ Метрика Хемминга: 11 00 01 = 3 = $d_{\rm f}$


 $t_{\text{испр}} = \lfloor (d_f - 1)/2 \rfloor = 1$

Определение минимального свободного расстояния d_f сверточного кодера (2,1,3) (g_1 =100, g_2 =101)

Несистематический катастрофический сверточный кодер (2,1,3) $(g_1=110,g_2=101)$ $(k=3,q=1,m=2,R=q/m=1/2,n=k\cdot m/q=6,d_f=4)$

Структура несистематического сверточного кодера (2,1,3) $(g_1=110, g_2=101)$

Катастрофичность кодера: появление конечного числа ошибок в кодовой последовательности может привести к размножению ошибок при декодировании

1

d = 11

последовательность

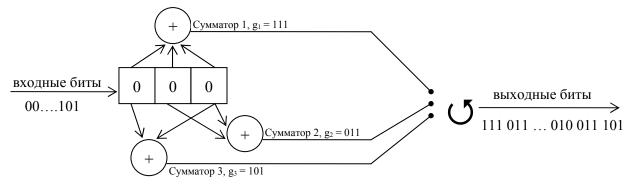
1

Декодированная

-- 00

1

00


1

 $H_3 = 0$

 $H_4 = 0$

 $H_5 = 0$

1

Структура несистематического сверточного кодера (3,1,3) $(g_1=111, g_2=011, g_2=101)$

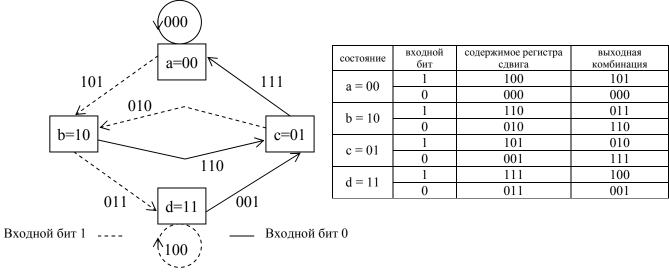
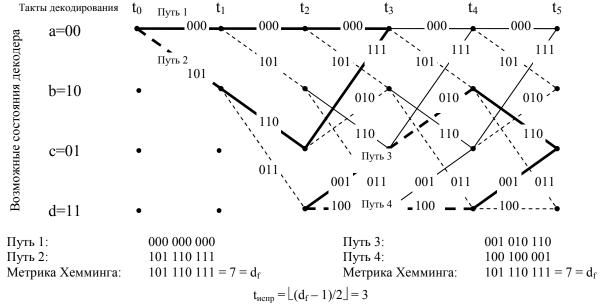
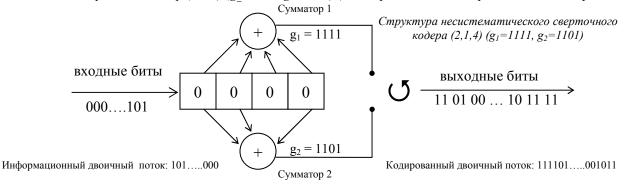
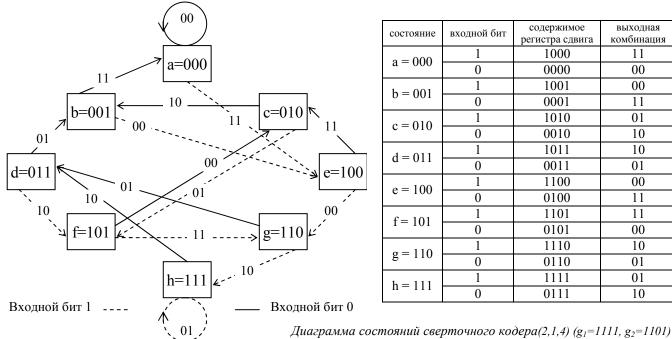
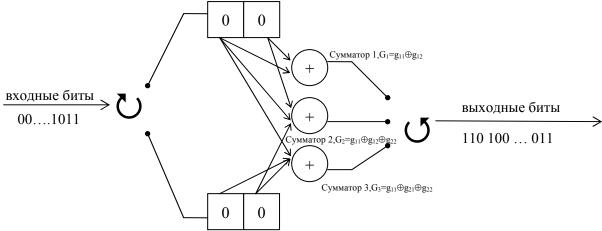





Диаграмма состояний сверточного кодера (3,1,3) $(g_1=111, g_2=011, g_2=101)$

Решеточная диаграмма сверточного кодера (3,1,3) $(g_1$ =111, g_2 =011, g_2 =101) и определение минимального свободного расстояния d_f



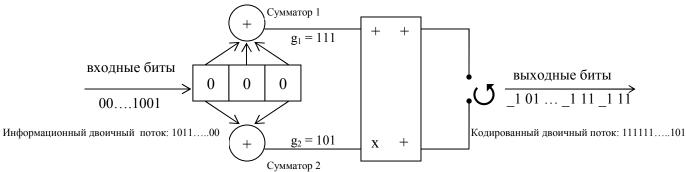
состояние	входной бит	содержимое	выходная
СОСТОЯНИС	входной ойт	регистра сдвига	комбинация
a = 000	1	1000	11
	0	0000	00
b = 001	1	1001	00
	0	0001	11
c = 010	1	1010	01
C - 010	0	0010	10
d = 011	1	1011	10
	0	0011	01
e = 100	1	1100	00
C - 100	0	0100	11
f = 101	1	1101	11
1 – 101	0	0101	00
g = 110	1	1110	10
g – 110	0	0110	01
h = 111	1	1111	01
11 – 111	0	0111	10

Такты декодирования t_0 t_1 t_2 t_3 t_4 t_5 t_6 a = 000b = 001c = 010Возможные состояния декодера d = 011e = 100f=101 g = 110h=111

Решеточная диаграмма сверточного кодера (2,1,4) $(g_1=1111, g_2=1101)$

Структура несистематического сверточного кодера (3,2,4)

Входная комбинация 00 Входная комбинация 01
a=00 001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
000 $=$ 101 $=$ 010 $=$ 100
(011)

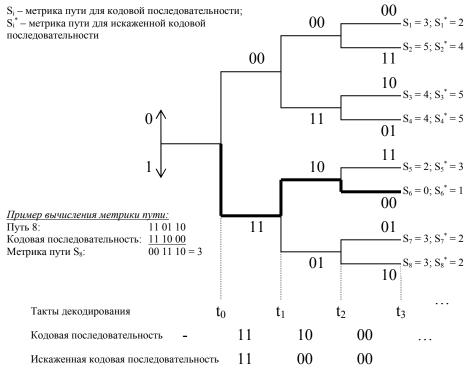

состояние	входные биты	содержимое PC1	содержимое PC2	выходная комбинация
	00	00	00	000
a = 00	01	00	10	001
	10	10	00	111
	11	10	10	110
b = 10	00	01	00	110
	01	01	10	111
0 - 10	10	11	00	001
	11	11	10	000
	00	00	01	011
c = 01	01	00	11	010
C - 01	10	10	01	100
	11	10	11	101
	00	01	01	101
d = 11	01	01	11	100
u 11	10	11	01	010
	11	11	11	011

Входная комбинация 10 = = = Входная комбинация 11

минимальное свободное расстояние кодера $d_f = 3$. $t_{ucnp} = \lfloor (d_f - 1)/2 \rfloor = 1$ Диаграмма состояний сверточного кодера (3,2,4) и определение его корректирующей способности

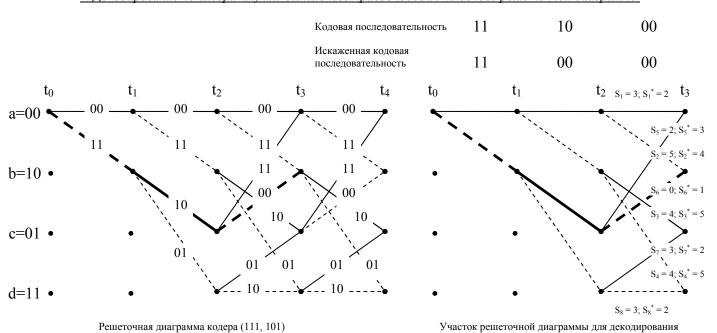
Перфорированные сверточные коды

Перфорированный сверточный кодер (3,2,3) $(g_1=111, g_2=101)$ (k=3, q=2, m=3, R=q/m=2/3)

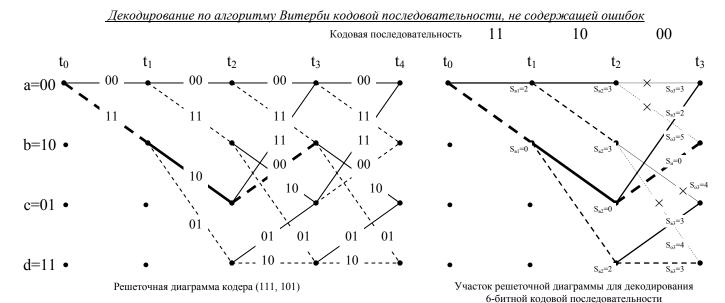

Структура систематического сверточного кодера (110, 101)

Матрицы перфорации для получения различных скоростей сверточных кодов

Скорость кода	Правило (маска) перфорации	
1/2	+ +	
2/3	+ + X +	
3/4	+ X + X + +	
5/6	+ X + X + X + X + +	
7/8	+ X + X X X + X + X + + + +	


Декодирование сверточных кодов с исправлением ошибок.

Декодирование сверточных кодов по алгоритму максимального правдоподобия на примере кодера (2,1,3) (g_1 =111, g_2 =101) <u>1. Декодирование по алгоритму максимального правдоподобия на основе древовидной диаграммы</u>

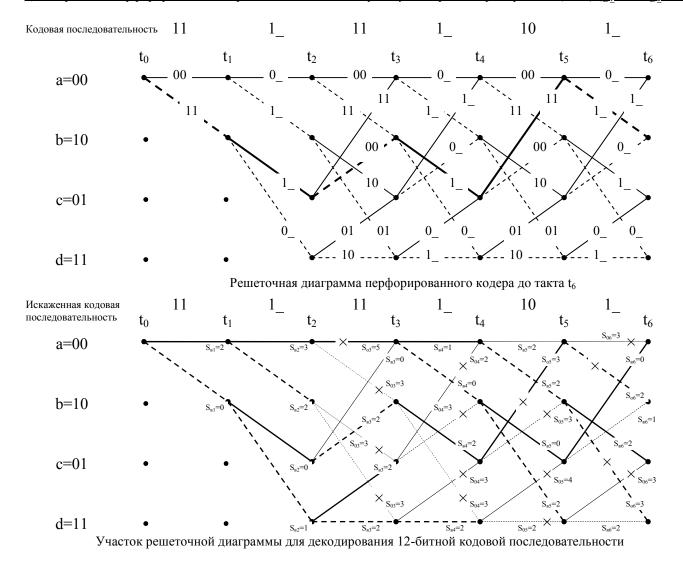


		Метрика пути S_i	Метрика пути $\mathbf{S_i}^*$	
Путь на древовидной диаграмме до		(расстояние Хемминга между путем и принятой кодовой комбинацией	(расстояние Хемминга между путем и искаженной кодовой	
	такта t ₃	принятой кодовой комойнацией 11 10 00)	комбинацией 11 00 00)	
1	00 00 00	3	2	
2	00 00 11	5	4	
3	00 11 10	4	5	
4	00 11 01	4	5	
5	11 10 11	2	3	
6	11 10 00	0	1	
7	11 01 01	3	2	
8	11 01 10	3	2	

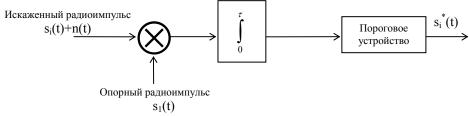
2. Декодирование по алгоритму максимального правдоподобия на основе решеточной диаграммы

6-битной кодовой последовательности

 $S_{\text{ві}}$ – выжившие пути на і-м такте декодирования (i=1÷N); $S_{\text{оі}}$ – отброшенные пути на і-м такте декодирования (i=3÷N); $S_{\text{н}}$ – истинный путь. Определяется на последнем такте декодирования (такте N)

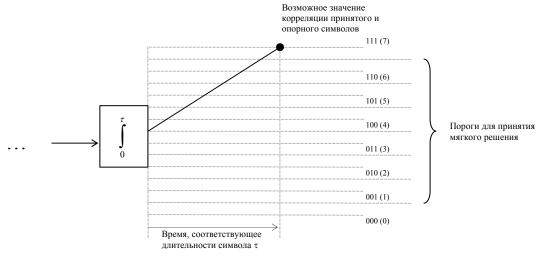

Декодирование по алгоритму Витерби искаженной кодовой последовательности с ошибкой первой кратности 00 Искаженная кодовая последовательность 11 00 t_3 t_3 t_0 t_2 t_4 t_1 t_2 00 00 a=00 11 11 11 11 b=10 •00 00 10 10 c=01 • 01 01 01 01 01 -- 10 10 d=11 • Решеточная диаграмма кодера (111, 101) Участок решеточной диаграммы для декодирования

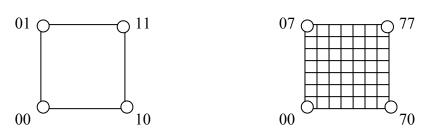
 $S_{\text{вi}}$ – выжившие пути на i-м такте декодирования (i=1÷N); S_{oi} – отброшенные пути на i-м такте декодирования (i=3÷N); $S_{\text{н}}$ – истинный путь. Определяется на последнем такте декодирования (такте N)


6-битной кодовой последовательности

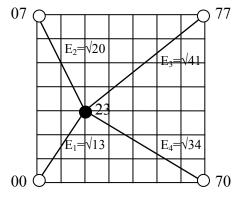
Участок решеточной диаграммы для декодирования 12-битной кодовой последовательности

d=11


Декодирование сверточных кодов с мягкими решениями


Демодулятор сигналов ФМн-2 (BPSK)

Демодулятор с жесткими решениями



Демодулятор с мягкими решениями

Плоскость жесткой схемы принятия решений для сверточного кода со скоростью 1/2

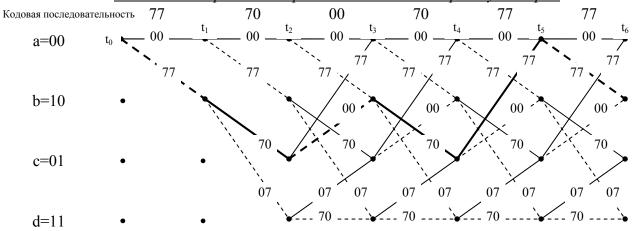
Плоскость мягкой схемы принятия решений для сверточного кода со скоростью 1/2

Метрики Евклида для принятого кода (2,3) на плоскости мягкой схемы принятия решений

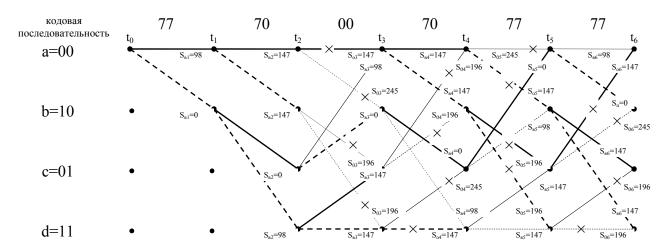
Метрика Евклида для двух точек с координатами (x_1,y_1) и (x_2,y_2) определяется соотношением:

$$E = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

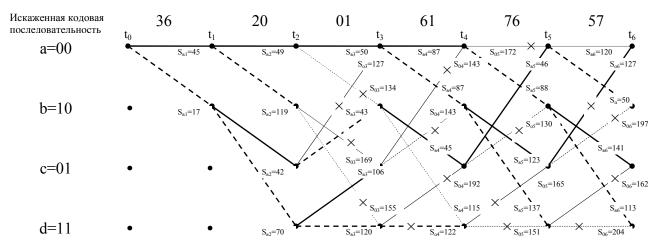
Метрика Евклида между принятым сигналом (точка (2,3)) и идеальными опорными сигналами:


$$E_{1} = \sqrt{(2-0)^{2} + (3-0)^{2}} = \sqrt{2^{2} + 3^{2}} = \sqrt{4+9} = \sqrt{13}$$

$$E_{2} = \sqrt{(2-0)^{2} + (3-7)^{2}} = \sqrt{2^{2} + (-4)^{2}} = \sqrt{4+16} = \sqrt{20}$$


$$E_{3} = \sqrt{(2-7)^{2} + (3-7)^{2}} = \sqrt{(-5)^{2} + (-4)^{2}} = \sqrt{25+16} = \sqrt{41}$$

$$E_{4} = \sqrt{(2-7)^{2} + (3-0)^{2}} = \sqrt{(-5)^{2} + 3^{2}} = \sqrt{25+9} = \sqrt{34}$$


Мягкое декодирование сверточных кодов по алгоритму Витерби

Решеточная диаграмма кодера (2,1,3) $(g_1=111, g_2=101)$ до такта t_6 при декодировании с мягкими решениями

Декодирование по алгоритму Витерби с мягкими решениями и использованием квадрата Евклидовой метрики

Декодирование по алгоритму Витерби с мягкими решениями и использованием квадрата Евклидовой метрики