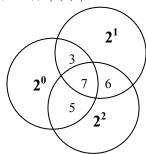
Блочное помехоустойчивое кодирование. Коды Хемминга.


Коды Хемминга, заданные в несистематическом виде

Произвольная двоичная комбинация	1	 1	0	1	0	0	0	1	1	0	1	0
Номер позиции в кодовом слове	16	 11	10	9	8	7	6	5	4	3	2	1
Двоичное представление номера позиции	10000	 01011	01010	01001	01000	00111	00110	00101	00100	00011	00010	00001
Разложение номера по степеням двойки	24=16	 20+21+23=1+2+8=11	21+23=2+8=10	20+23=1+8=9	23=8	20+21+22=1+2+4=7	21+22=2+4=6	20+22=1+4=5	22=4	20+21=1+2=3	21=2	20=1
Условное обозначение номера	c ₄	 a_6	a_5	a_4	c ₃	a_3	\mathbf{a}_2	a_1	c_2	\mathbf{a}_0	c_1	c_0

В качестве контрольных символов Р.Хеммингом было предложено использовать те позиции в кодовых комбинациях, которые содержат только одну единицу (в двоичном представлении номера позиции символа). Эти позиции соответствуют номерам, кратным степени двойки: 1,2,4,8,... Каждый из контрольных символов формируется всеми информационными символами, входящими в кодовую комбинацию и содержащими единицу (опять же в двоичном представлении номера позиции символа), соответствующую контрольному символу.

Несистематический код Хемминга (7,4,3) (k=4, r=3, n=7, $L_{oбiu}=2^n=128$, $L_{pagp}=2^k=16$, R=4/7, d=3)

Распределение сфер влияния контрольных битов для кода (7,4,3)

Проверочные символы сі определяются информационными символами аі из следующих соотношений:

 $c_0 = a_0 \oplus a_1 \oplus a_3$;

 $c_1 = a_0 \oplus a_2 \oplus a_3$;

 $c_2 = a_1 \oplus a_2 \oplus a_3$;

Формирование кодового слова несистематического кода Хемминга (7,4,3)

Информационное слово I: 1101

Найдем значения контрольных символов сі:

 $c_0 = 1 \oplus 0 \oplus 1 = 0;$

 $c_1 = 1 \oplus 1 \oplus 1 = 1$;

 $c_2 = 0 \oplus 1 \oplus 1 = 0;$

Номер позиции в кодовом слове	7	6	5	4	3	2	1
Условное обозначение	a_3	a_2	a_1	c_2	a_0	c_1	c_0
Значение символа	1	1	0	0	1	1	0

Кодовое 7-разрядное слово С, таким образом, будет выглядеть так: 1100110

Проверка кодового слова на наличие ошибок и декодирование информационной комбинации

Кодовое слово С с ошибкой нулевой кратности: 1100110

Проверка контрольных соотношений для каждого из проверочных символов с_і:

 $c_0 = 1 \oplus 0 \oplus 1 = 0;$

 $c_1 = 1 \oplus 1 \oplus 1 = 1;$

 $c_2 = 0 \oplus 1 \oplus 1 = 0$;

Номер позиции в кодовом слове	7	6	5	4	3	2	1
Условное обозначение	a_3	a_2	a_1	c_2	a_0	c_1	c_0
Значение принятого символа	1	1	0	0	1	1	0
Результат проверки контрольных символов				0		1	0

Полное совпадение результатов проверки контрольных символов c_0 , c_1 и c_2 с аналогичными контрольными символами в принятом кодовом слове C означает, что кодовое слово было принято без ошибок. Информационное слово I получается из кодового слова C путем отбрасывания контрольных разрядов: $C = 11001140 \rightarrow I = 1101$

<u>Кодовое слово С^{*} с ошибкой первой кратности: 0100110</u>

Проверка контрольных соотношений для каждого из проверочных символов с;:

$$c_0 = 1 \oplus 0 \oplus 0 = 1;$$

 $c_1 = 1 \oplus 1 \oplus 0 = 0;$

$$c_2 = 0 \oplus 1 \oplus 0 = 1;$$

Номер позиции в кодовом слове	7	6	5	4	3	2	1
Условное обозначение	a_3	a_2	a_1	c_2	a_0	c_1	c_0
Значение принятого символа	0	1	0	0	1	1	0
Результат проверки контрольных символов				1		0	1

Несовпадение результатов проверки контрольных символов c_0 , c_1 и c_2 с аналогичными контрольными символами в принятом кодовом слове C^* означает, что кодовое слово было принято с ошибкой. Для определения позиции искаженного символа в кодовом слове достаточно просуммировать веса искаженных контрольных символов. В нашем случае необходимо просуммировать веса всех трех контрольных символов: $c_0(2^0) + c_1(2^1) + c_2(2^2) = 1 + 2 + 4 = 7$. Таким образом, двоичный символ, находящийся в кодовом слове C^* на седьмой позиции был принят неверно. Для исправления ошибки достаточно изменить значение этого символа на противоположный. В нашем случае, значение $a_3 = 0$ изменяется на $a_3 = 1$. После исправления ошибки информационное слово I также как и в случае отсутствия ошибок получается из кодового слова C^* путем отбрасывания контрольных разрядов: $C = 1100140 \rightarrow I = 1101$

Коды Хемминга, заданные в систематическом виде $(k = 2^i - i - 1, n = 2^i - 1, i = 3, 4, ..., d = 3)$

Систематический (7,4,3)-код Хемминга (
$$k=4, r=3, n=7, L_{\underline{o}6\underline{u}}=2^n=128, L_{\underline{p}a3\underline{p}}=2^k=16, R=4/7, d=3$$
)

Производящая матрица G (7,4,3)-кода Хемминга

Информационные символы a_i являются элементами единичной матрицы $k \times k$.

Проверочные символы сі определяются информационными символами аі из следующих соотношений:

$$c_0 = a_0 \oplus a_1 \oplus a_3;$$

 $c_1 = a_0 \oplus a_2 \oplus a_3;$
 $c_2 = a_1 \oplus a_2 \oplus a_3;$

$$G = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 & | & c_2 & c_1 & c_0 \\ 1 & 0 & 0 & 0 & | & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & | & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} \quad k$$

Информационная комбинация 1101

Кодовая комбинация вычисляется путем сложения по mod2 двоичных символов в каждом из столбцов матрицы G_{1101} .

Проверочная матрица Н (7,4,3)-кода Хемминга формируется из производящей матрицы G

$$H = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 & | & c_2 & c_1 & c_0 \\ 1 & 1 & 1 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы H_{1101}

$$\mathbf{S} = \begin{bmatrix} 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \\ 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \\ 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Вычисленный синдром S = 000 указывает на отсутствие ошибок в принятой кодовой комбинации, что позволяет отбросить три младших (проверочных) разряда и восстановить исходную информационную комбинацию 1101.

Декодирование при возникновении однократных и двукратных ошибок

Код с ошибкой первой кратности: 0101010

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы H_{1101*}

$$S = \begin{bmatrix} 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \\ 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \\ 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Вычисленный синдром S = 111 указывает на наличие ошибки и совпадает с первым столбцом проверочной матрицы H, что позволяет сформировать корректирующий вектор 1000000, который складывается по mod2 с принятой кодовой комбинацией. В результате появляется исправленная кодовая комбинация 1101010, которая при отбрасывании младших (проверочных) разрядов позволяет восстановить исходную информационную комбинацию 1101

Код с ошибкой второй кратности: 0101000

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы H_{1101**}

$$S = \begin{bmatrix} 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \\ 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \\ 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Вычисленный синдром S=101 указывает на наличие ошибки и совпадает со вторым столбцом проверочной матрицы H, что позволяет сформировать корректирующий вектор 0010000, который складывается по mod2 с принятой кодовой комбинацией. В результате появляется кодовая комбинация 0111000, которая при отбрасывании младших (проверочных) разрядов дает комбинацию 0111, не совпадающую с исходной информационной комбинацией, поскольку кодовое расстояние d=3 кода Хемминга не позволяет исправлять ошибки выше первой кратности.

$$(8,4,4)$$
-код Хемминга с дополнительной проверкой на четность $(k=4,\,r=4,\,n=8,\,L_{_{DGW}}=2^n=256,\,L_{_{DG3P}}=2^k=16,\,R=1/2,\,d=4)$

Формирование 7-разрядной кодовой комбинации аналогично формированию кода Хемминга (7,4,3). Дополнительный, восьмой бит вычисляется путем проверки 7-разрядной кодовой комбинации на четность: "0" добавляется в случае, если количество единиц в комбинации четное, "1" — если количество единиц — нечетное.

Для рассмотренного выше примера, кодовая комбинация 1101010 дополняется битом "0", в результате чего формируется кодовая комбинация 11010100.

Проверочная матрица Н (8,4,4)-кода Хемминга

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & | & 1 & 0 & 0 & | & 0 \\ 1 & 1 & 0 & 1 & | & 0 & 1 & 0 & | & 0 \\ 1 & 0 & 1 & 1 & | & 0 & 0 & 1 & | & 0 \\ 1 & 1 & 1 & 1 & | & 1 & 1 & 1 & | & 1 \end{bmatrix}$$

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы Н₁₁₀₁

$$S = \begin{bmatrix} 1 \oplus 1 \oplus 0 \\ 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \\ 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \end{bmatrix}$$

Вычисленный синдром S = 0000 указывает на отсутствие ошибок в принятой кодовой комбинации, что позволяет отбросить четыре младших (проверочных) разряда и восстановить исходную информационную комбинацию 1101.

Декодирование при возникновении однократных и двукратных ошибок

Код с ошибкой первой кратности: 01010100

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы H_{1101*}

$$S = \begin{bmatrix} 0 \oplus 1 \oplus 0 & \\ 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 & \\ 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 & \\ 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 & \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Вычисленный синдром S = 1111 указывает на наличие ошибки и совпадает с первым столбцом проверочной матрицы H, что позволяет сформировать корректирующий вектор 10000000, который складывается по mod2 с принятой кодовой комбинацией. В результате появляется исправленная кодовая комбинация 11010100, которая при отбрасывании младших (проверочных) разрядов позволяет восстановить исходную информационную комбинацию 1101

Код с ошибкой второй кратности: 01010000

Декодирование осуществляется путем перемножения кодовой комбинации на проверочную матрицу Н

И вычислением указателя ошибки (синдрома) путем сложения символов в каждой из строк матрицы $H_{1101}**$

Вычисленный синдром S = 1010 указывает на наличие двукратной ошибки, поскольку первые три символа синдрома указывают на наличие ошибки, а последний символ — на наличие ошибки четной кратности, что позволяет сделать вывод о наличии неисправляемой ошибки.